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Preface to the Second Edition

The twenty years since the publication of the first edition of this book have seen tremendous
progress in artificial intelligence, propelled in large part by advances in machine learning,
including advances in reinforcement learning. Although the impressive computational
power that became available is responsible for some of these advances, new developments
in theory and algorithms have been driving forces as well. In the face of this progress, a
second edition of our 1998 book was long overdue, and we finally began the project in
2012. Our goal for the second edition was the same as our goal for the first: to provide a
clear and simple account of the key ideas and algorithms of reinforcement learning that
is accessible to readers in all the related disciplines. The edition remains an introduction,
and we retain a focus on core, online learning algorithms. This edition includes some new
topics that rose to importance over the intervening years, and we expanded coverage of
topics that we now understand better. But we made no attempt to provide comprehensive
coverage of the field, which has exploded in many di↵erent directions. We apologize for
having to leave out all but a handful of these contributions.

As in the first edition, we chose not to produce a rigorous formal treatment of
reinforcement learning, or to formulate it in the most general terms. However, our deeper
understanding of some topics since the first edition required a bit more mathematics
to explain; we have set o↵ the more mathematical parts in shaded boxes that the non-
mathematically-inclined may choose to skip. We also use a slightly di↵erent notation
than was used in the first edition. In teaching, we have found that the new notation
helps to address some common points of confusion. It emphasizes the di↵erence between
random variables, denoted with capital letters, and their instantiations, denoted in lower
case. For example, the state, action, and reward at time step t are denoted St, At,
and Rt, while their possible values might be denoted s, a, and r. Along with this, it is
natural to use lower case for value functions (e.g., v⇡) and restrict capitals to their tabular
estimates (e.g., Qt(s, a)). Approximate value functions are deterministic functions of
random parameters and are thus also in lower case (e.g., v̂(s,wt) ⇡ v⇡(s)). Vectors, such
as the weight vector wt (formerly ✓t) and the feature vector xt (formerly �t), are bold
and written in lowercase even if they are random variables. Uppercase bold is reserved for
matrices. In the first edition we used special notations, P

a

ss0 and R
a

ss0 , for the transition
probabilities and expected rewards. One weakness of that notation is that it still did not
fully characterize the dynamics of the rewards, giving only their expectations, which is
su�cient for dynamic programming but not for reinforcement learning. Another weakness

xiii



xiv Preface to the Second Edition

is the excess of subscripts and superscripts. In this edition we use the explicit notation of
p(s0, r |s, a) for the joint probability for the next state and reward given the current state
and action. All the changes in notation are summarized in a table on page xix.

The second edition is significantly expanded, and its top-level organization has been
changed. After the introductory first chapter, the second edition is divided into three new
parts. The first part (Chapters 2–8) treats as much of reinforcement learning as possible
without going beyond the tabular case for which exact solutions can be found. We cover
both learning and planning methods for the tabular case, as well as their unification
in n-step methods and in Dyna. Many algorithms presented in this part are new to
the second edition, including UCB, Expected Sarsa, Double learning, tree-backup, Q(�),
RTDP, and MCTS. Doing the tabular case first, and thoroughly, enables core ideas to be
developed in the simplest possible setting. The second part of the book (Chapters 9–13)
is then devoted to extending the ideas to function approximation. It has new sections on
artificial neural networks, the fourier basis, LSTD, kernel-based methods, Gradient-TD
and Emphatic-TD methods, average-reward methods, true online TD(�), and policy-
gradient methods. The second edition significantly expands the treatment of o↵-policy
learning, first for the tabular case in Chapters 5–7, then with function approximation in
Chapters 11 and 12. Another change is that the second edition separates the forward-view
idea of n-step bootstrapping (now treated more fully in Chapter 7) from the backward-
view idea of eligibility traces (now treated independently in Chapter 12). The third part
of the book has large new chapters on reinforcement learning’s relationships to psychology
(Chapter 14) and neuroscience (Chapter 15), as well as an updated case-studies chapter
including Atari game playing, Watson’s wagering strategy, and the Go playing programs
AlphaGo and AlphaGo Zero (Chapter 16). Still, out of necessity we have included only a
small subset of all that has been done in the field. Our choices reflect our long-standing
interests in inexpensive model-free methods that should scale well to large applications.
The final chapter now includes a discussion of the future societal impacts of reinforcement
learning. For better or worse, the second edition is about twice as large as the first.

This book is designed to be used as the primary text for a one- or two-semester
course on reinforcement learning. For a one-semester course, the first ten chapters should
be covered in order and form a good core, to which can be added material from the
other chapters, from other books such as Bertsekas and Tsitsiklis (1996), Wiering and
van Otterlo (2012), and Szepesvári (2010), or from the literature, according to taste.
Depending of the students’ background, some additional material on online supervised
learning may be helpful. The ideas of options and option models are a natural addition
(Sutton, Precup and Singh, 1999). A two-semester course can cover all the chapters as
well as supplementary material. The book can also be used as part of broader courses
on machine learning, artificial intelligence, or neural networks. In this case, it may be
desirable to cover only a subset of the material. We recommend covering Chapter 1 for a
brief overview, Chapter 2 through Section 2.4, Chapter 3, and then selecting sections
from the remaining chapters according to time and interests. Chapter 6 is the most
important for the subject and for the rest of the book. A course focusing on machine
learning or neural networks should cover Chapters 9 and 10, and a course focusing on
artificial intelligence or planning should cover Chapter 8. Throughout the book, sections
and chapters that are more di�cult and not essential to the rest of the book are marked
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with a ⇤. These can be omitted on first reading without creating problems later on. Some
exercises are also marked with a ⇤ to indicate that they are more advanced and not
essential to understanding the basic material of the chapter.

Most chapters end with a section entitled “Bibliographical and Historical Remarks,”
wherein we credit the sources of the ideas presented in that chapter, provide pointers to
further reading and ongoing research, and describe relevant historical background. Despite
our attempts to make these sections authoritative and complete, we have undoubtedly left
out some important prior work. For that we again apologize, and we welcome corrections
and extensions for incorporation into the electronic version of the book.

Like the first edition, this edition of the book is dedicated to the memory of A. Harry
Klopf. It was Harry who introduced us to each other, and it was his ideas about the brain
and artificial intelligence that launched our long excursion into reinforcement learning.
Trained in neurophysiology and long interested in machine intelligence, Harry was a
senior scientist a�liated with the Avionics Directorate of the Air Force O�ce of Scientific
Research (AFOSR) at Wright-Patterson Air Force Base, Ohio. He was dissatisfied with
the great importance attributed to equilibrium-seeking processes, including homeostasis
and error-correcting pattern classification methods, in explaining natural intelligence
and in providing a basis for machine intelligence. He noted that systems that try to
maximize something (whatever that might be) are qualitatively di↵erent from equilibrium-
seeking systems, and he argued that maximizing systems hold the key to understanding
important aspects of natural intelligence and for building artificial intelligences. Harry was
instrumental in obtaining funding from AFOSR for a project to assess the scientific merit
of these and related ideas. This project was conducted in the late 1970s at the University
of Massachusetts Amherst (UMass Amherst), initially under the direction of Michael
Arbib, William Kilmer, and Nico Spinelli, professors in the Department of Computer
and Information Science at UMass Amherst, and founding members of the Cybernetics
Center for Systems Neuroscience at the University, a farsighted group focusing on the
intersection of neuroscience and artificial intelligence. Barto, a recent Ph.D. from the
University of Michigan, was hired as post doctoral researcher on the project. Meanwhile,
Sutton, an undergraduate studying computer science and psychology at Stanford, had
been corresponding with Harry regarding their mutual interest in the role of stimulus
timing in classical conditioning. Harry suggested to the UMass group that Sutton would
be a great addition to the project. Thus, Sutton became a UMass graduate student,
whose Ph.D. was directed by Barto, who had become an Associate Professor. The study
of reinforcement learning as presented in this book is rightfully an outcome of that
project instigated by Harry and inspired by his ideas. Further, Harry was responsible
for bringing us, the authors, together in what has been a long and enjoyable interaction.
By dedicating this book to Harry we honor his essential contributions, not only to the
field of reinforcement learning, but also to our collaboration. We also thank Professors
Arbib, Kilmer, and Spinelli for the opportunity they provided to us to begin exploring
these ideas. Finally, we thank AFOSR for generous support over the early years of our
research, and the NSF for its generous support over many of the following years.

We have very many people to thank for their inspiration and help with this second
edition. Everyone we acknowledged for their inspiration and help with the first edition
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deserve our deepest gratitude for this edition as well, which would not exist were it not
for their contributions to edition number one. To that long list we must add many others
who contributed specifically to the second edition. Our students over the many years that
we have taught this material contributed in countless ways: exposing errors, o↵ering fixes,
and—not the least—being confused in places where we could have explained things better.
We especially thank Martha Steenstrup for reading and providing detailed comments
throughout. The chapters on psychology and neuroscience could not have been written
without the help of many experts in those fields. We thank John Moore for his patient
tutoring over many many years on animal learning experiments, theory, and neuroscience,
and for his careful reading of multiple drafts of Chapters 14 and 15. We also thank Matt
Botvinick, Nathaniel Daw, Peter Dayan, and Yael Niv for their penetrating comments on
drafts of these chapter, their essential guidance through the massive literature, and their
interception of many of our errors in early drafts. Of course, the remaining errors in these
chapters—and there must still be some—are totally our own. We thank Phil Thomas for
helping us make these chapters accessible to non-psychologists and non-neuroscientists,
and we thank Peter Sterling for helping us improve the exposition. We are grateful to Jim
Houk for introducing us to the subject of information processing in the basal ganglia and
for alerting us to other relevant aspects of neuroscience. José Mart́ınez, Terry Sejnowski,
David Silver, Gerry Tesauro, Georgios Theocharous, and Phil Thomas generously helped
us understand details of their reinforcement learning applications for inclusion in the
case-studies chapter, and they provided helpful comments on drafts of these sections.
Special thanks are owed to David Silver for helping us better understand Monte Carlo
Tree Search and the DeepMind Go-playing programs. We thank George Konidaris for his
help with the section on the Fourier basis. Emilio Cartoni, Thomas Cederborg, Stefan
Dernbach, Clemens Rosenbaum, Patrick Taylor, Thomas Colin, and Pierre-Luc Bacon
helped us in a number important ways for which we are most grateful.

Sutton would also like to thank the members of the Reinforcement Learning and
Artificial Intelligence laboratory at the University of Alberta for contributions to the
second edition. He owes a particular debt to Rupam Mahmood for essential contributions
to the treatment of o↵-policy Monte Carlo methods in Chapter 5, to Hamid Maei for
helping develop the perspective on o↵-policy learning presented in Chapter 11, to Eric
Graves for conducting the experiments in Chapter 13, to Shangtong Zhang for replicating
and thus verifying almost all the experimental results, to Kris De Asis for improving
the new technical content of Chapters 7 and 12, and to Harm van Seijen for insights
that led to the separation of n-step methods from eligibility traces and (along with Hado
van Hasselt) for the ideas involving exact equivalence of forward and backward views of
eligibility traces presented in Chapter 12. Sutton also gratefully acknowledges the support
and freedom he was granted by the Government of Alberta and the National Science and
Engineering Research Council of Canada throughout the period during which the second
edition was conceived and written. In particular, he would like to thank Randy Goebel
for creating a supportive and far-sighted environment for research in Alberta. He would
also like to thank DeepMind their support in the last six months of writing the book.

Finally, we owe thanks to the many careful readers of drafts of the second edition that
we posted on the internet. They found many errors that we had missed and alerted us to
potential points of confusion.
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We first came to focus on what is now known as reinforcement learning in late 1979. We
were both at the University of Massachusetts, working on one of the earliest projects to
revive the idea that networks of neuronlike adaptive elements might prove to be a promising
approach to artificial adaptive intelligence. The project explored the “heterostatic theory
of adaptive systems” developed by A. Harry Klopf. Harry’s work was a rich source of
ideas, and we were permitted to explore them critically and compare them with the long
history of prior work in adaptive systems. Our task became one of teasing the ideas apart
and understanding their relationships and relative importance. This continues today,
but in 1979 we came to realize that perhaps the simplest of the ideas, which had long
been taken for granted, had received surprisingly little attention from a computational
perspective. This was simply the idea of a learning system that wants something, that
adapts its behavior in order to maximize a special signal from its environment. This
was the idea of a “hedonistic” learning system, or, as we would say now, the idea of
reinforcement learning.

Like others, we had a sense that reinforcement learning had been thoroughly explored
in the early days of cybernetics and artificial intelligence. On closer inspection, though,
we found that it had been explored only slightly. While reinforcement learning had clearly
motivated some of the earliest computational studies of learning, most of these researchers
had gone on to other things, such as pattern classification, supervised learning, and
adaptive control, or they had abandoned the study of learning altogether. As a result, the
special issues involved in learning how to get something from the environment received
relatively little attention. In retrospect, focusing on this idea was the critical step that
set this branch of research in motion. Little progress could be made in the computational
study of reinforcement learning until it was recognized that such a fundamental idea had
not yet been thoroughly explored.

The field has come a long way since then, evolving and maturing in several directions.
Reinforcement learning has gradually become one of the most active research areas in ma-
chine learning, artificial intelligence, and neural network research. The field has developed
strong mathematical foundations and impressive applications. The computational study
of reinforcement learning is now a large field, with hundreds of active researchers around
the world in diverse disciplines such as psychology, control theory, artificial intelligence,
and neuroscience. Particularly important have been the contributions establishing and
developing the relationships to the theory of optimal control and dynamic programming.

xvii
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The overall problem of learning from interaction to achieve goals is still far from being
solved, but our understanding of it has improved significantly. We can now place compo-
nent ideas, such as temporal-di↵erence learning, dynamic programming, and function
approximation, within a coherent perspective with respect to the overall problem.

Our goal in writing this book was to provide a clear and simple account of the key
ideas and algorithms of reinforcement learning. We wanted our treatment to be accessible
to readers in all of the related disciplines, but we could not cover all of these perspectives
in detail. For the most part, our treatment takes the point of view of artificial intelligence
and engineering. Coverage of connections to other fields we leave to others or to another
time. We also chose not to produce a rigorous formal treatment of reinforcement learning.
We did not reach for the highest possible level of mathematical abstraction and did not
rely on a theorem–proof format. We tried to choose a level of mathematical detail that
points the mathematically inclined in the right directions without distracting from the
simplicity and potential generality of the underlying ideas.

...
In some sense we have been working toward this book for thirty years, and we have lots

of people to thank. First, we thank those who have personally helped us develop the overall
view presented in this book: Harry Klopf, for helping us recognize that reinforcement
learning needed to be revived; Chris Watkins, Dimitri Bertsekas, John Tsitsiklis, and
Paul Werbos, for helping us see the value of the relationships to dynamic programming;
John Moore and Jim Kehoe, for insights and inspirations from animal learning theory;
Oliver Selfridge, for emphasizing the breadth and importance of adaptation; and, more
generally, our colleagues and students who have contributed in countless ways: Ron
Williams, Charles Anderson, Satinder Singh, Sridhar Mahadevan, Steve Bradtke, Bob
Crites, Peter Dayan, and Leemon Baird. Our view of reinforcement learning has been
significantly enriched by discussions with Paul Cohen, Paul Utgo↵, Martha Steenstrup,
Gerry Tesauro, Mike Jordan, Leslie Kaelbling, Andrew Moore, Chris Atkeson, Tom
Mitchell, Nils Nilsson, Stuart Russell, Tom Dietterich, Tom Dean, and Bob Narendra.
We thank Michael Littman, Gerry Tesauro, Bob Crites, Satinder Singh, and Wei Zhang
for providing specifics of Sections 4.7, 15.1, 15.4, 15.4, and 15.6 respectively. We thank
the Air Force O�ce of Scientific Research, the National Science Foundation, and GTE
Laboratories for their long and farsighted support.

We also wish to thank the many people who have read drafts of this book and
provided valuable comments, including Tom Kalt, John Tsitsiklis, Pawel Cichosz, Olle
Gällmo, Chuck Anderson, Stuart Russell, Ben Van Roy, Paul Steenstrup, Paul Cohen,
Sridhar Mahadevan, Jette Randlov, Brian Sheppard, Thomas O’Connell, Richard Coggins,
Cristina Versino, John H. Hiett, Andreas Badelt, Jay Ponte, Joe Beck, Justus Piater,
Martha Steenstrup, Satinder Singh, Tommi Jaakkola, Dimitri Bertsekas, Torbjörn Ekman,
Christina Björkman, Jakob Carlström, and Olle Palmgren. Finally, we thank Gwyn
Mitchell for helping in many ways, and Harry Stanton and Bob Prior for being our
champions at MIT Press.



Summary of Notation

Capital letters are used for random variables, whereas lower case letters are used for
the values of random variables and for scalar functions. Quantities that are required to
be real-valued vectors are written in bold and in lower case (even if random variables).
Matrices are bold capitals.

.
= equality relationship that is true by definition
⇡ approximately equal
/ proportional to
Pr{X =x} probability that a random variable X takes on the value x
X ⇠ p random variable X selected from distribution p(x)

.
= Pr{X =x}

E[X] expectation of a random variable X, i.e., E[X]
.
=
P

x
p(x)x

argmax
a
f(a) a value of a at which f(a) takes its maximal value

ln x natural logarithm of x
ex the base of the natural logarithm, e ⇡ 2.71828, carried to power x; eln x = x
R set of real numbers
f : X! Y function f from elements of set X to elements of set Y

 assignment
(a, b] the real interval between a and b including b but not including a

" probability of taking a random action in an "-greedy policy
↵,� step-size parameters
� discount-rate parameter
� decay-rate parameter for eligibility traces

predicate indicator function ( predicate
.
= 1 if the predicate is true, else 0)

In a multi-arm bandit problem:
k number of actions (arms)
t discrete time step or play number
q⇤(a) true value (expected reward) of action a
Qt(a) estimate at time t of q⇤(a)
Nt(a) number of times action a has been selected up prior to time t
Ht(a) learned preference for selecting action a at time t
⇡t(a) probability of selecting action a at time t
R̄t estimate at time t of the expected reward given ⇡t

xix



xx Summary of Notation

In a Markov Decision Process:
s, s0 states
a an action
r a reward
S set of all nonterminal states
S

+ set of all states, including the terminal state
A(s) set of all actions available in state s
R set of all possible rewards, a finite subset of R
⇢ subset of; e.g., R ⇢ R
2 is an element of; e.g., s 2 S, r 2 R

|S| number of elements in set S

t discrete time step
T, T (t) final time step of an episode, or of the episode including time step t
At action at time t
St state at time t, typically due, stochastically, to St�1 and At�1

Rt reward at time t, typically due, stochastically, to St�1 and At�1

⇡ policy (decision-making rule)
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡

Gt return following time t
h horizon, the time step one looks up to in a forward view
Gt:t+n, Gt:h n-step return from t + 1 to t + n, or to h (discounted and corrected)
Ḡt:h flat return (undiscounted and uncorrected) from t + 1 to h (Section 5.8)
G�

t
�-return (Section 12.1)

G�

t:h
truncated, corrected �-return (Section 12.3)

G�s

t
, G�a

t
�-return, corrected by estimated state, or action, values (Section 12.8)

p(s0, r |s, a) probability of transition to state s0 with reward r, from state s and action a
p(s0 |s, a) probability of transition to state s0, from state s taking action a
r(s, a) expected immediate reward from state s after action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy

V, Vt array estimates of state-value function v⇡ or v⇤
Q, Qt array estimates of action-value function q⇡ or q⇤
V̄t(s) expected approximate action value, e.g., V̄t(s)

.
=
P

a
⇡(a|s)Qt(s, a)

Ut target for estimate at time t
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�t temporal-di↵erence (TD) error at t (a random variable) (Section 6.1)
�s

t
, �a

t
state- and action-specific forms of the TD error (Section 12.9)

n in n-step methods, n is the number of steps of bootstrapping

d dimensionality—the number of components of w
d0 alternate dimensionality—the number of components of ✓
w,wt d-vector of weights underlying an approximate value function
wi, wt,i ith component of learnable weight vector
v̂(s,w) approximate value of state s given weight vector w
vw(s) alternate notation for v̂(s,w)
q̂(s, a,w) approximate value of state–action pair s, a given weight vector w
rv̂(s,w) column vector of partial derivatives of v̂(s,w) with respect to w
rq̂(s, a,w) column vector of partial derivatives of q̂(s, a,w) with respect to w

x(s) vector of features visible when in state s
x(s, a) vector of features visible when in state s taking action a
xi(s), xi(s, a) ith component of vector x(s) or x(s, a)
xt shorthand for x(St) or x(St, At)
w>x inner product of vectors, w>x

.
=
P

i
wixi; e.g., v̂(s,w)

.
= w>x(s)

v,vt secondary d-vector of weights, used to learn w (Chapter 11)
zt d-vector of eligibility traces at time t (Chapter 12)

✓, ✓t parameter vector of target policy (Chapter 13)
⇡(a|s, ✓) probability of taking action a in state s given parameter vector ✓
⇡✓ policy corresponding to parameter ✓
r⇡(a|s, ✓) column vector of partial derivatives of ⇡(a|s, ✓) with respect to ✓
J(✓) performance measure for the policy ⇡✓

rJ(✓) column vector of partial derivatives of J(✓) with respect to ✓
h(s, a, ✓) preference for selecting action a in state s based on ✓

b(a|s) behavior policy used to select actions while learning about target policy ⇡
b(s) a baseline function b : S 7! R for policy-gradient methods
b branching factor for an MDP or search tree
⇢t:h importance sampling ratio for time t through time h (Section 5.5)
⇢t importance sampling ratio for time t alone, ⇢t

.
= ⇢t:t

r(⇡) average reward (reward rate) for policy ⇡ (Section 10.3)
R̄t estimate of r(⇡) at time t

µ(s) on-policy distribution over states (Section 9.2)
µ |S|-vector of the µ(s) for all s 2 S

kvk2
µ

µ-weighted squared norm of value function v, i.e., kvk2
µ

.
=
P

s2S µ(s)v(s)2

⌘(s) expected number of visits to state s per episode (page 199)
⇧ projection operator for value functions (page 268)
B⇡ Bellman operator for value functions (Section 11.4)
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A d⇥ d matrix A
.
= E

h
xt

�
xt � �xt+1

�>
i

b d-dimensional vector b
.
= E[Rt+1xt]

wTD TD fixed point wTD

.
= A�1b (a d-vector, Section 9.4)

I identity matrix
P |S|⇥ |S| matrix of state-transition probabilities under ⇡
D |S|⇥ |S| diagonal matrix with µ on its diagonal
X |S|⇥ d matrix with the x(s) as its rows

�̄w(s) Bellman error (expected TD error) for vw at state s (Section 11.4)
�̄w, BE Bellman error vector, with components �̄w(s)
VE(w) mean square value error VE(w)

.
= kvw � v⇡k2µ (Section 9.2)

BE(w) mean square Bellman error BE(w)
.
=
���̄w

��2

µ

PBE(w) mean square projected Bellman error PBE(w)
.
=
��⇧�̄w

��2

µ

TDE(w) mean square temporal-di↵erence error TDE(w)
.
= Eb

⇥
⇢t�2

t

⇤
(Section 11.5)

RE(w) mean square return error (Section 11.6)



Chapter 1

Introduction

The idea that we learn by interacting with our environment is probably the first to occur
to us when we think about the nature of learning. When an infant plays, waves its arms,
or looks about, it has no explicit teacher, but it does have a direct sensorimotor connection
to its environment. Exercising this connection produces a wealth of information about
cause and e↵ect, about the consequences of actions, and about what to do in order to
achieve goals. Throughout our lives, such interactions are undoubtedly a major source
of knowledge about our environment and ourselves. Whether we are learning to drive
a car or to hold a conversation, we are acutely aware of how our environment responds
to what we do, and we seek to influence what happens through our behavior. Learning
from interaction is a foundational idea underlying nearly all theories of learning and
intelligence.

In this book we explore a computational approach to learning from interaction. Rather
than directly theorizing about how people or animals learn, we primarily explore idealized
learning situations and evaluate the e↵ectiveness of various learning methods.1 That
is, we adopt the perspective of an artificial intelligence researcher or engineer. We
explore designs for machines that are e↵ective in solving learning problems of scientific or
economic interest, evaluating the designs through mathematical analysis or computational
experiments. The approach we explore, called reinforcement learning , is much more
focused on goal-directed learning from interaction than are other approaches to machine
learning.

1.1 Reinforcement Learning

Reinforcement learning is learning what to do—how to map situations to actions—so
as to maximize a numerical reward signal. The learner is not told which actions to
take, but instead must discover which actions yield the most reward by trying them. In
the most interesting and challenging cases, actions may a↵ect not only the immediate

1The relationships to psychology and neuroscience are summarized in Chapters 14 and 15.
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reward but also the next situation and, through that, all subsequent rewards. These two
characteristics—trial-and-error search and delayed reward—are the two most important
distinguishing features of reinforcement learning.

Reinforcement learning, like many topics whose names end with “ing,” such as machine
learning and mountaineering, is simultaneously a problem, a class of solution methods
that work well on the problem, and the field that studies this problem and its solution
methods. It is convenient to use a single name for all three things, but at the same time
essential to keep the three conceptually separate. In particular, the distinction between
problems and solution methods is very important in reinforcement learning; failing to
make this distinction is the source of many confusions.

We formalize the problem of reinforcement learning using ideas from dynamical sys-
tems theory, specifically, as the optimal control of incompletely-known Markov decision
processes. The details of this formalization must wait until Chapter 3, but the basic idea
is simply to capture the most important aspects of the real problem facing a learning
agent interacting over time with its environment to achieve a goal. A learning agent
must be able to sense the state of its environment to some extent and must be able to
take actions that a↵ect the state. The agent also must have a goal or goals relating to
the state of the environment. Markov decision processes are intended to include just
these three aspects—sensation, action, and goal—in their simplest possible forms without
trivializing any of them. Any method that is well suited to solving such problems we
consider to be a reinforcement learning method.

Reinforcement learning is di↵erent from supervised learning, the kind of learning studied
in most current research in the field of machine learning. Supervised learning is learning
from a training set of labeled examples provided by a knowledgable external supervisor.
Each example is a description of a situation together with a specification—the label—of
the correct action the system should take to that situation, which is often to identify a
category to which the situation belongs. The object of this kind of learning is for the
system to extrapolate, or generalize, its responses so that it acts correctly in situations
not present in the training set. This is an important kind of learning, but alone it is not
adequate for learning from interaction. In interactive problems it is often impractical to
obtain examples of desired behavior that are both correct and representative of all the
situations in which the agent has to act. In uncharted territory—where one would expect
learning to be most beneficial—an agent must be able to learn from its own experience.

Reinforcement learning is also di↵erent from what machine learning researchers call
unsupervised learning, which is typically about finding structure hidden in collections of
unlabeled data. The terms supervised learning and unsupervised learning would seem
to exhaustively classify machine learning paradigms, but they do not. Although one
might be tempted to think of reinforcement learning as a kind of unsupervised learning
because it does not rely on examples of correct behavior, reinforcement learning is trying
to maximize a reward signal instead of trying to find hidden structure. Uncovering
structure in an agent’s experience can certainly be useful in reinforcement learning, but by
itself does not address the reinforcement learning problem of maximizing a reward signal.
We therefore consider reinforcement learning to be a third machine learning paradigm,
alongside supervised learning and unsupervised learning and perhaps other paradigms.
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One of the challenges that arise in reinforcement learning, and not in other kinds
of learning, is the trade-o↵ between exploration and exploitation. To obtain a lot of
reward, a reinforcement learning agent must prefer actions that it has tried in the past
and found to be e↵ective in producing reward. But to discover such actions, it has to
try actions that it has not selected before. The agent has to exploit what it has already
experienced in order to obtain reward, but it also has to explore in order to make better
action selections in the future. The dilemma is that neither exploration nor exploitation
can be pursued exclusively without failing at the task. The agent must try a variety of
actions and progressively favor those that appear to be best. On a stochastic task, each
action must be tried many times to gain a reliable estimate of its expected reward. The
exploration–exploitation dilemma has been intensively studied by mathematicians for
many decades, yet remains unresolved. For now, we simply note that the entire issue of
balancing exploration and exploitation does not even arise in supervised and unsupervised
learning, at least in the purest forms of these paradigms.

Another key feature of reinforcement learning is that it explicitly considers the whole
problem of a goal-directed agent interacting with an uncertain environment. This is in
contrast to many approaches that consider subproblems without addressing how they
might fit into a larger picture. For example, we have mentioned that much of machine
learning research is concerned with supervised learning without explicitly specifying how
such an ability would finally be useful. Other researchers have developed theories of
planning with general goals, but without considering planning’s role in real-time decision
making, or the question of where the predictive models necessary for planning would
come from. Although these approaches have yielded many useful results, their focus on
isolated subproblems is a significant limitation.

Reinforcement learning takes the opposite tack, starting with a complete, interactive,
goal-seeking agent. All reinforcement learning agents have explicit goals, can sense
aspects of their environments, and can choose actions to influence their environments.
Moreover, it is usually assumed from the beginning that the agent has to operate despite
significant uncertainty about the environment it faces. When reinforcement learning
involves planning, it has to address the interplay between planning and real-time action
selection, as well as the question of how environment models are acquired and improved.
When reinforcement learning involves supervised learning, it does so for specific reasons
that determine which capabilities are critical and which are not. For learning research to
make progress, important subproblems have to be isolated and studied, but they should
be subproblems that play clear roles in complete, interactive, goal-seeking agents, even if
all the details of the complete agent cannot yet be filled in.

By a complete, interactive, goal-seeking agent we do not always mean something like
a complete organism or robot. These are clearly examples, but a complete, interactive,
goal-seeking agent can also be a component of a larger behaving system. In this case,
the agent directly interacts with the rest of the larger system and indirectly interacts
with the larger system’s environment. A simple example is an agent that monitors the
charge level of robot’s battery and sends commands to the robot’s control architecture.
This agent’s environment is the rest of the robot together with the robot’s environment.
One must look beyond the most obvious examples of agents and their environments to
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appreciate the generality of the reinforcement learning framework.
One of the most exciting aspects of modern reinforcement learning is its substantive

and fruitful interactions with other engineering and scientific disciplines. Reinforcement
learning is part of a decades-long trend within artificial intelligence and machine learning
toward greater integration with statistics, optimization, and other mathematical subjects.
For example, the ability of some reinforcement learning methods to learn with parameter-
ized approximators addresses the classical “curse of dimensionality” in operations research
and control theory. More distinctively, reinforcement learning has also interacted strongly
with psychology and neuroscience, with substantial benefits going both ways. Of all the
forms of machine learning, reinforcement learning is the closest to the kind of learning
that humans and other animals do, and many of the core algorithms of reinforcement
learning were originally inspired by biological learning systems. Reinforcement learning
has also given back, both through a psychological model of animal learning that better
matches some of the empirical data, and through an influential model of parts of the
brain’s reward system. The body of this book develops the ideas of reinforcement learning
that pertain to engineering and artificial intelligence, with connections to psychology and
neuroscience summarized in Chapters 14 and 15.

Finally, reinforcement learning is also part of a larger trend in artificial intelligence
back toward simple general principles. Since the late 1960’s, many artificial intelligence
researchers presumed that there are no general principles to be discovered, that intelligence
is instead due to the possession of a vast number of special purpose tricks, procedures,
and heuristics. It was sometimes said that if we could just get enough relevant facts into a
machine, say one million, or one billion, then it would become intelligent. Methods based
on general principles, such as search or learning, were characterized as “weak methods,”
whereas those based on specific knowledge were called “strong methods.” This view is
still common today, but not dominant. From our point of view, it was simply premature:
too little e↵ort had been put into the search for general principles to conclude that there
were none. Modern artificial intelligence now includes much research looking for general
principles of learning, search, and decision making. It is not clear how far back the
pendulum will swing, but reinforcement learning research is certainly part of the swing
back toward simpler and fewer general principles of artificial intelligence.

1.2 Examples

A good way to understand reinforcement learning is to consider some of the examples
and possible applications that have guided its development.

• A master chess player makes a move. The choice is informed both by planning—
anticipating possible replies and counterreplies—and by immediate, intuitive judg-
ments of the desirability of particular positions and moves.

• An adaptive controller adjusts parameters of a petroleum refinery’s operation in
real time. The controller optimizes the yield/cost/quality trade-o↵ on the basis
of specified marginal costs without sticking strictly to the set points originally
suggested by engineers.
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• A gazelle calf struggles to its feet minutes after being born. Half an hour later it is
running at 20 miles per hour.

• A mobile robot decides whether it should enter a new room in search of more trash
to collect or start trying to find its way back to its battery recharging station. It
makes its decision based on the current charge level of its battery and how quickly
and easily it has been able to find the recharger in the past.

• Phil prepares his breakfast. Closely examined, even this apparently mundane
activity reveals a complex web of conditional behavior and interlocking goal–subgoal
relationships: walking to the cupboard, opening it, selecting a cereal box, then
reaching for, grasping, and retrieving the box. Other complex, tuned, interactive
sequences of behavior are required to obtain a bowl, spoon, and milk carton. Each
step involves a series of eye movements to obtain information and to guide reaching
and locomotion. Rapid judgments are continually made about how to carry the
objects or whether it is better to ferry some of them to the dining table before
obtaining others. Each step is guided by goals, such as grasping a spoon or getting
to the refrigerator, and is in service of other goals, such as having the spoon to eat
with once the cereal is prepared and ultimately obtaining nourishment. Whether
he is aware of it or not, Phil is accessing information about the state of his body
that determines his nutritional needs, level of hunger, and food preferences.

These examples share features that are so basic that they are easy to overlook. All
involve interaction between an active decision-making agent and its environment, within
which the agent seeks to achieve a goal despite uncertainty about its environment. The
agent’s actions are permitted to a↵ect the future state of the environment (e.g., the
next chess position, the level of reservoirs of the refinery, the robot’s next location and
the future charge level of its battery), thereby a↵ecting the actions and opportunities
available to the agent at later times. Correct choice requires taking into account indirect,
delayed consequences of actions, and thus may require foresight or planning.

At the same time, in all of these examples the e↵ects of actions cannot be fully predicted;
thus the agent must monitor its environment frequently and react appropriately. For
example, Phil must watch the milk he pours into his cereal bowl to keep it from overflowing.
All these examples involve goals that are explicit in the sense that the agent can judge
progress toward its goal based on what it can sense directly. The chess player knows
whether or not he wins, the refinery controller knows how much petroleum is being
produced, the gazelle calf knows when it falls, the mobile robot knows when its batteries
run down, and Phil knows whether or not he is enjoying his breakfast.

In all of these examples the agent can use its experience to improve its performance
over time. The chess player refines the intuition he uses to evaluate positions, thereby
improving his play; the gazelle calf improves the e�ciency with which it can run; Phil
learns to streamline making his breakfast. The knowledge the agent brings to the task at
the start—either from previous experience with related tasks or built into it by design or
evolution—influences what is useful or easy to learn, but interaction with the environment
is essential for adjusting behavior to exploit specific features of the task.
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1.3 Elements of Reinforcement Learning

Beyond the agent and the environment, one can identify four main subelements of a
reinforcement learning system: a policy , a reward signal , a value function, and, optionally,
a model of the environment.

A policy defines the learning agent’s way of behaving at a given time. Roughly speaking,
a policy is a mapping from perceived states of the environment to actions to be taken
when in those states. It corresponds to what in psychology would be called a set of
stimulus–response rules or associations. In some cases the policy may be a simple function
or lookup table, whereas in others it may involve extensive computation such as a search
process. The policy is the core of a reinforcement learning agent in the sense that it alone
is su�cient to determine behavior. In general, policies may be stochastic, specifying
probabilities for each action.

A reward signal defines the goal of a reinforcement learning problem. On each time
step, the environment sends to the reinforcement learning agent a single number called
the reward. The agent’s sole objective is to maximize the total reward it receives over
the long run. The reward signal thus defines what are the good and bad events for the
agent. In a biological system, we might think of rewards as analogous to the experiences
of pleasure or pain. They are the immediate and defining features of the problem faced
by the agent. The reward signal is the primary basis for altering the policy; if an action
selected by the policy is followed by low reward, then the policy may be changed to
select some other action in that situation in the future. In general, reward signals may
be stochastic functions of the state of the environment and the actions taken.

Whereas the reward signal indicates what is good in an immediate sense, a value
function specifies what is good in the long run. Roughly speaking, the value of a state is
the total amount of reward an agent can expect to accumulate over the future, starting
from that state. Whereas rewards determine the immediate, intrinsic desirability of
environmental states, values indicate the long-term desirability of states after taking into
account the states that are likely to follow and the rewards available in those states. For
example, a state might always yield a low immediate reward but still have a high value
because it is regularly followed by other states that yield high rewards. Or the reverse
could be true. To make a human analogy, rewards are somewhat like pleasure (if high)
and pain (if low), whereas values correspond to a more refined and farsighted judgment
of how pleased or displeased we are that our environment is in a particular state.

Rewards are in a sense primary, whereas values, as predictions of rewards, are secondary.
Without rewards there could be no values, and the only purpose of estimating values is to
achieve more reward. Nevertheless, it is values with which we are most concerned when
making and evaluating decisions. Action choices are made based on value judgments. We
seek actions that bring about states of highest value, not highest reward, because these
actions obtain the greatest amount of reward for us over the long run. Unfortunately, it
is much harder to determine values than it is to determine rewards. Rewards are basically
given directly by the environment, but values must be estimated and re-estimated from
the sequences of observations an agent makes over its entire lifetime. In fact, the most
important component of almost all reinforcement learning algorithms we consider is a
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method for e�ciently estimating values. The central role of value estimation is arguably
the most important thing that has been learned about reinforcement learning over the
last six decades.

The fourth and final element of some reinforcement learning systems is a model of
the environment. This is something that mimics the behavior of the environment, or
more generally, that allows inferences to be made about how the environment will behave.
For example, given a state and action, the model might predict the resultant next state
and next reward. Models are used for planning, by which we mean any way of deciding
on a course of action by considering possible future situations before they are actually
experienced. Methods for solving reinforcement learning problems that use models and
planning are called model-based methods, as opposed to simpler model-free methods that
are explicitly trial-and-error learners—viewed as almost the opposite of planning. In
Chapter 8 we explore reinforcement learning systems that simultaneously learn by trial
and error, learn a model of the environment, and use the model for planning. Modern
reinforcement learning spans the spectrum from low-level, trial-and-error learning to
high-level, deliberative planning.

1.4 Limitations and Scope

Reinforcement learning relies heavily on the concept of state—as input to the policy and
value function, and as both input to and output from the model. Informally, we can
think of the state as a signal conveying to the agent some sense of “how the environment
is” at a particular time. The formal definition of state as we use it here is given by
the framework of Markov decision processes presented in Chapter 3. More generally,
however, we encourage the reader to follow the informal meaning and think of the state
as whatever information is available to the agent about its environment. In e↵ect, we
assume that the state signal is produced by some preprocessing system that is nominally
part of the agent’s environment. We do not address the issues of constructing, changing,
or learning the state signal in this book (other than briefly in Section 17.3). We take this
approach not because we consider state representation to be unimportant, but in order
to focus fully on the decision-making issues. In other words, our concern in this book is
not with designing the state signal, but with deciding what action to take as a function
of whatever state signal is available.

Most of the reinforcement learning methods we consider in this book are structured
around estimating value functions, but it is not strictly necessary to do this to solve
reinforcement learning problems. For example, solution methods such as genetic algo-
rithms, genetic programming, simulated annealing, and other optimization methods never
estimate value functions. These methods apply multiple static policies each interacting
over an extended period of time with a separate instance of the environment. The policies
that obtain the most reward, and random variations of them, are carried over to the
next generation of policies, and the process repeats. We call these evolutionary methods
because their operation is analogous to the way biological evolution produces organisms
with skilled behavior even if they do not learn during their individual lifetimes. If the
space of policies is su�ciently small, or can be structured so that good policies are
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common or easy to find—or if a lot of time is available for the search—then evolutionary
methods can be e↵ective. In addition, evolutionary methods have advantages on problems
in which the learning agent cannot sense the complete state of its environment.

Our focus is on reinforcement learning methods that learn while interacting with the
environment, which evolutionary methods do not do. Methods able to take advantage
of the details of individual behavioral interactions can be much more e�cient than
evolutionary methods in many cases. Evolutionary methods ignore much of the useful
structure of the reinforcement learning problem: they do not use the fact that the policy
they are searching for is a function from states to actions; they do not notice which states
an individual passes through during its lifetime, or which actions it selects. In some cases
this information can be misleading (e.g., when states are misperceived), but more often it
should enable more e�cient search. Although evolution and learning share many features
and naturally work together, we do not consider evolutionary methods by themselves to
be especially well suited to reinforcement learning problems and, accordingly, we do not
cover them in this book.

1.5 An Extended Example: Tic-Tac-Toe

To illustrate the general idea of reinforcement learning and contrast it with other ap-
proaches, we next consider a single example in more detail.

X

X

X

O O

XO

Consider the familiar child’s game of tic-tac-toe. Two players
take turns playing on a three-by-three board. One player plays
Xs and the other Os until one player wins by placing three marks
in a row, horizontally, vertically, or diagonally, as the X player
has in the game shown to the right. If the board fills up with
neither player getting three in a row, then the game is a draw.
Because a skilled player can play so as never to lose, let us assume
that we are playing against an imperfect player, one whose play
is sometimes incorrect and allows us to win. For the moment, in
fact, let us consider draws and losses to be equally bad for us. How might we construct a
player that will find the imperfections in its opponent’s play and learn to maximize its
chances of winning?

Although this is a simple problem, it cannot readily be solved in a satisfactory way
through classical techniques. For example, the classical “minimax” solution from game
theory is not correct here because it assumes a particular way of playing by the opponent.
For example, a minimax player would never reach a game state from which it could
lose, even if in fact it always won from that state because of incorrect play by the
opponent. Classical optimization methods for sequential decision problems, such as
dynamic programming, can compute an optimal solution for any opponent, but require
as input a complete specification of that opponent, including the probabilities with which
the opponent makes each move in each board state. Let us assume that this information
is not available a priori for this problem, as it is not for the vast majority of problems of
practical interest. On the other hand, such information can be estimated from experience,
in this case by playing many games against the opponent. About the best one can do




